home bbs files messages ]

Just a sample of the Echomail archive

<< oldest | < older | list | newer > | newest >> ]

 Message 664 
 Roger Nelson to All 
 NASA's 'Flying Saucer' Readies for First 
 02 Jun 14 22:18:21 
 
NASA's 'Flying Saucer' Readies for First Test Flight
 
June 2, 2014: It only sounds like science fiction.
 
To test a new technology for landing heavy payloads on Mars, NASA is about to
drop a flying-saucer shaped vehicle from a helium balloon high above Earth's
surface.
 
The first launch opportunity for the Low Density Supersonic Decelerator (LDSD)
is June 3rd at 8:30 a.m. HST, when the launch window opens at the U.S. Navy's
Pacific Missile Range Facility in Kauai, Hawaii.  Officials are calling it an
"engineering shakeout flight."
 
http://www.nasa.gov/sites/default/files/pia18006ldsdbig-main_1.jpeg
 
A saucer-shaped test vehicle holding equipment for landing large payloads on
Mars is shown in the Missile Assembly Building at the US Navy's Pacific
Missile Range Facility in Kaua`i, Hawaii.  More
 
"The agency is moving forward and getting ready for Mars as part of NASA's
Evolvable Mars campaign," says Michael Gazarik, associate administrator for
Space Technology at NASA Headquarters in Washington. As NASA plans
increasingly ambitious robotic missions to Mars, laying the groundwork for
human science expeditions to come, missions will require larger and heavier
spacecraft. The objective of the LDSD project is to see if the cutting-edge,
rocket-powered test vehicle operates as it was designed -- in near-space at
high Mach numbers.
 
The way NASA's saucer climbs to test altitude is almost as distinctive as the
test vehicle itself.
 
"We use a helium balloon -- that, when fully inflated, would fit snugly into
Pasadena's Rose Bowl -- to lift our vehicle to 120,000 feet," said Mark Adler,
project manager for the Low Density Supersonic Decelerator at NASA's Jet
Propulsion Laboratory. "From there we drop it for about one and a half
seconds. After that, it's all about going higher and faster -- and then it's
about putting on the brakes."
 
A fraction of a second after dropping from the balloon, and a few feet below
it, four small rocket motors will fire to spin up and gyroscopically stabilize
the saucer. A half second later, a Star 48B long-nozzle, solid-fueled rocket
engine will kick in with 17,500 pounds of thrust, sending the test vehicle to
the edge of the stratosphere.
 
http://www.nasa.gov/sites/default/files/pia18007ldsdhang_0.jpeg
 
A saucer-shaped vehicle designed to test interplanetary landing devices hangs
on a tower in preparation for launch at the Pacific Missile Range.  
More"Our goal is to get to an altitude and velocity which simulates the kind
of environment one of our vehicles would encounter when it would fly in the
Martian atmosphere," said Ian Clark, principal investigator of the LDSD
project at JPL. "We top out at about 180,000 feet and Mach 4. Then, as we slow
down to Mach 3.8, we deploy the first of two new atmospheric braking systems."
 
"After years of imagination, engineering and hard work, we soon will get to
see our Keiki o ka honua, our 'boy from Earth,' show us its stuff," says
Adler. "If our flying saucer hits its speed and altitude targets, it will be a
great day."
 
The project management team decided also to fly two supersonic decelerator
technologies that will be thoroughly tested during two more LDSD flight tests
next year. If this year's test vehicle flies as expected, the LDSD team may
get a treasure-trove of data on how the 6-meter supersonic inflatable
aerodynamic decelerator (SIAD-R) and the supersonic parachute operate a full
year ahead of schedule.
 
The SIAD-R, essentially an inflatable doughnut that increases the vehicle's
size and, as a result, its drag, is deployed at about Mach 3.8. It will
quickly slow the vehicle to Mach 2.5 where the parachute, the largest
supersonic parachute ever flown, first hits the supersonic flow. About 45
minutes later, the saucer is expected to make a controlled landing onto the
Pacific Ocean off Hawaii.
 
NASA TV will carry live images and commentary of LDSD engineering test. The
test vehicle itself carries several onboard cameras. It is expected that video
of selected portions of the test, including the rocket-powered ascent, will be
downlinked during the commentary. Websites streaming live video of the test
include http://www.nasa.gov/nasatv and http://www.ustream.tv/nasajpl2
 
Credits:
Production editor: Dr. Tony Phillips | Credit: Science@NASA
 
Web Links:  For more information about LDSD, visit http://www.na
a.gov/mission_pages/tdm/ldsd/
NASA's Space Technology Mission Directorate in Washington funds the LDSD
mission, a cooperative effort led by JPL. NASA's Marshall Space Flight Center
in Huntsville, Alabama, manages LDSD within the Technology Demonstration
Mission Program Office. NASA's Wallops Flight Facility in Virginia is
coordinating support with the Pacific Missile Range Facility and providing the
balloon systems for the LDSD test.
 
 
Regards,
 
Roger

--- D'Bridge 3.99
 * Origin: NCS BBS - Houma, LoUiSiAna (1:3828/7)

<< oldest | < older | list | newer > | newest >> ]

(c) 1994,  bbs@darkrealms.ca